
1. PREAMBLE

Statistics are essential for rating methods and for reporting analytic results.  Evaluating

data and methods without proper statistical procedures can lead to costly errors in

judgement. Statistical methods are also used in industrial process control. Various

types of graphs are used to predict and eliminate manufacturing errors, before they can

cause serious problems.

2. REPORTING RESULTS

2.1 ERRORS

Reporting analytical results without an associated error is useless, and the information

given is misleading. Reporting a result without an associated error gives an impression

that the result is completely accurate. This assumption is false, considering that no

analytical procedure known is totally accurate.

2.1.1 THE STANDARDIZED RANDOM ERROR

To assess the uncertainty associated with a measurement calculate the standardised

random error. This error gives  the  variability arising from  random fluctuations in the

operating environment.

Most authors, such as Friedmann, use Formula 1 for calculating the standardised

random error.
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Formula 1 incorporates s, called the Sample Standard Deviation, given in Formula 2.
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Formula 2 also uses X bar, which is just the simple arithmetic mean, and is given by

Formula 3. n in Formulas 1, 2, and 3 is the number of determinations: if one made three

determinations of a sample n would be 3.
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As n increases, the error decreases towards an asymptotic limit of 0. Although it would

be desirable to have a very small error, it is a waste of time and resources to make 200

determinations of a sample. At least three determinations are necessary for an

accurate estimate of the error.

Devoe recommends using a modified version of Formula 1,  given in Formula 4. He

feels that this equation is more valid since it allows reporting at a 95% confidence level.

In his experiments, he found that the means sometimes varied outside the predicted

error, if the additional factor of t was not included.

s
t s

n
x =

∗

Equation 4

Sample Concentration (%)

1 0.3829

2 0.4308

3 0..3763

2.1.1.1 Example 1:

Calculate the standard randomised error from the average of the following three

determinations of percentage chloropyrifos.



2.1.2 GRAND AVERAGES AND ERRORS

A grand average calculated from averages with errors must also have an associated

error. The best remedy for this problem is to simply average the errors, giving a good

estimate of the grand average’s error.

2.1.3 ESTIMATING THE ERROR

Determining  uncertainty,  by  calculating  the  standardized random error, i8 quite

accurate. There are, however, times when one wishes to make a quick measurement of

some physical property, such as density or pH. In this case, an estimation of the error

would be sufficient, since only one measurement is being taken. Table II1 gives a  list

of the errors associated with common laboratory equipment.

Table I1:  Errors associated with common analytic instruments

Instrument Error

Burettes (mL) ±0.02 per reading

Pipettes (mL) 5±0.01

10±0.02

25±0.03

                                           
1 F.W. Fifield and D. Kealey, Principles and Practice of Analytic Chemistry 2nd edition, 1983.-With

additions.
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50±0.05

100±0.08

Volumetric flasks (mL) 25±0.03

50±0.05

100±0.08

250±0.12

500±0.15

1000±0.30

2000±0.50

Graduated cylinders (mL) 100±0.10

Analytic balance (g)

Small balance (g)

±0.0002 per reading

±0.05 per reading

Specific gravity balance ±0.0005 per reading

pH meter ±0.005 per reading

♦ Note: Estimate the precision of an analytic instrument if not already known. The best

approximation is five times the smallest reading. If a pH meter gave readings to two

decimal places, then its error would be 0.05.

2.1.4 USING ESTIMATES OF PRECISION TO REPORT ERROR IN A CALCULATED

RESULT

There are times when a single replicate result has a number of errors  contributing to

its  uncertainty.  In  this  case  it  is necessary to combine the errors, as shown in

Example 2. Convert errors into relative, or percentage, errors before they combining

them.

2.1.4.1 Example 2:

A 100 mL aliquot of Diazinon in a 100mL graduated cylinder weighs 56.78g find the

total error.
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2.2 BIAS

In most cases, a method will have a bias associated with its results  This bias consists

of a fixed and concentration dependant, also called relative, portion. An equation

compensating for the bias is usually determined during method development.

2.2.1.1 Example 3:

 Adjust for the bias if the equation compensating for it is given by Formula 5, the

average is 0.3967, and the error is 0.04760.
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♦ Note:  The relative error, which is the error divided by the result, remains constant

unless two results are multiplied together or the result is raised to a power. If results

with errors are raised to a power,  then their relative errors are multiplied by that

power.

2.3 OUTLIERS

It is possible to determine if an excessively large, or small, value can be discarded, so

that it no longer skews the average. Anderson describes a set of calculations suitable

for this purpose. Formula 6 is useful for 3-7 determinations, Formula 7 for 8-10

determinations, and Formula 8 for 11-13 determinations.
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Where, the values being arranged in ascending order,

Xn = The suspected value.

Xn-1 = The value closest to the suspected value.

Xn-2 = The value second closest to the suspected value.

X1 = The value furthest from the suspected value.

X2 = The value second furthest from the suspected value.

Table II2: Critical values for R in the test for outliers.

Significance Level

Number in Set 90 % 95 % 99 %

3 0.885 0.941 0.998

4 0.679 0.765 0.889

5 0.557 0.643 0.780

6 0.482 0.560 0.698

7 0.434 0.507 0.637

8 0.479 0.554 0.683

9 0.441 0.512 0.635

                                           
2 W.J. Dixon, Processing Data for Outliers, Biometrics, Vol. 9, No. 1, 74-89, 1953.



10 0.409 0.477 0.597

11 0.517 0.576 0.679

12 0.490 0.546 0.642

13 0.467 0.521 0.615

2.3.1.1 Example 4:

Given that a test for chloropyrifos concentration yielded three values of 0.3763%,

0.4308%, and 0.3829%, is 0.4308% an outlier?

Using Formula  (6),  and arranging the values in ascending order:

R =
−
−

=
0 4308 0 3829

0 4308 0 3763
0 8789

. .

. .
.

Since R95, 3=0.941, and the calculated R value does not exceed it, 0.4368% is not an

outlier at 95% confidence.

♦ Note: The lag-1 autocorrelation plot, found in section D, can be used for the

graphical evaluation of outliers.

2.4 IS THE PRECISION OF TWO SETS OF DATA THE SAME?

There are many occasions, such as a method being evaluated, when it would be

advantageous to know whether two sets of data have the same precision. The

statistical method that allows this to be determined is known as the F-Test and is given

by Formula (9), with the critical values in Appendix D.
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Where:

sa= The larger standard deviation.

sb= The smaller standard deviation.



2.4.1.1 Example 5:

Two different concentrations of chloropyrifos were determined, with the averages

having standard deviations of 2.976X10-2 and 0.1002,  and 3 and 2  determinations

respectively.  Is the precision of these two sets of data different?

F = =
01002

0 02976
1134
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From the F table, the value for 2 by 1 degrees of freedom is 18.5.  Since F=11.34 , the

two sets of data have the same precision at a 95% significance level.

2.5 ARE TWO AVERAGES THE SAME?

If the analytical result from a sample appears much higher than would be expected,

another analysis would be in order. When the second analysis yields a different

average, one can perform a statistical test, called a two-tailed Students t-Test in order

to determine whether they are the same.

The first thing that must be done is an F-Test, ascertaining whether the variance of the

two sets is the same. If they are of homogeneous variation, Formulas 10 and 11 apply,

otherwise Formulas 12 and 13 are used. The critical values for t are given in Appendix

D.
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2.5.1.1 Example 6:

Concentration 1 was 1.05196, s-8.891X10~2, n-9, and concentration 2 was 2,328%,

s=1.308x10-1 Are these two averages statistically different?

First, use the F-Test to determine whether the two runs had the same precision.

F = =
01308

0 08891
147

2
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.

Since the calculated F is less than F 38=8.85, from the table of critical values in Appendix

D, it Is possible to say that the two sets of results are of homogenous variance.

Now, using equation (10) and (11), calculate the t value.
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From the two-tailed t-Table, the critical value is t 95, 11 = 2.20.  The two averages are

not statistically the same

When the averages are less than t, and/or there are very few measurements, the t-Test

may give a false result.   Appendix D contains a table that gives the number of

measurements necessary to ensure a specified sensitivity of the t-Test.



2.6 STANDARDIZING A PRIMARY REFERENCE

In order to standardize a primary reference, at least ten determinations  must  be

made.  The  average  is  calculated and reported, with the randomized standard error

(4), as the purity of the standard. The purity should be reported to three significant

figures.   If  the  error  is  unacceptably  high,  then  more determinations should be

made.

3. METHOD EVALUATION

3.1 ESTIMATING THE PRECISION OF A METHOD

The standard approach,  for estimating the precision of a method, is to calculate the

standard deviation from a large number of determinations. Another, much less labour

intensive, technique is to pool the standard deviations from a set of determinations.

3.1.1 WHEN CAN VARIANCES BE POOLED?

One can only pool variances if they are homogenous. Two tests exist for this purpose.

Cochranes Test for sets of data with equivalent degrees of freedom, and Bartletts Test

for sets with different degrees of freedom.  It is best to design a method evaluation so

that the number of determinations remains constant considering that Bartletts Test is

much more tedious to calculate. One could also use the F-Test to determine whether

each variance is equivalent—the ultimate in tedium

3.1.1.1 THE COCHRAN TEST

Like the F-Test, Cochran’s test, given by equation 14, uses a ratio of variances to

calculate a critical value, called the g statistic. If the value of g,  for k standard

deviations and n observations, is greater than the calculated g, the variances are

homogenous. Critical values for g can be found in the Appendix.
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♦ Note: The test only works if all n’s are equal.

3.1.1.2 Example 7:

For each of the following standard deviations, n was 3. Are the variances of these sets

equal?

Table III: Standard deviations of six standards.

Sample # Standard Deviation

1 1.339X10-2

2 2.974X10-2

3 5.119X10-2

4 3.747X10-2

5 1.027X10-2

6 3.409X10-2

With the number of determinations uniform between variances, Cochran’s Test would

be suitable.
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Since, from Appendix D, g 0.05, k=6, n=3 =  0.6161, is larger than the calculated g, all sets

of data have the same variance.



3.1.1.3 THE BARTLETT TEST

Bartlett’s Test, given by Equations (15) to (21), is used to calculate an F value. The

Bartlett Tests only fallback is its erroneous result of non-homogeneity, when the data is

not normally distributed.  It can,  however,  still be used if the variances approximate a

normal distribution.
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Where:

ni =  Number of observations associated with each variance si.

N =   Sum of all n’s



k =   Number of variances being compared.

df1 = Degrees of freedom for the numerator.

df2 = Degrees of freedom for the denominator.

3.1.1.4 Example 8:

Given the following standard deviations and observations determine whether the

variances of these data ssets are equivalent.

Table IV3: Standard Deviations of Iron Tests.

Sample # Number of

Determinations ni

Standard Deviation si

1 10 4.11X10-3

2 6 1.353X10-2

3 5 4.445X10-2

4 6 1.976X10-2

Since the number of determinations differs between samples it is necessary to use

Bartlett’s test.

                                           
3 M. Fernandez, unpublished work, 1992
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Since 3.81<F 95, 786, 3 <3.82, all sets have equal variances.

3.2 POOLING THE STANDARD DEVIATIONS

Standard deviations can be pooled if they have been classified as homogeneous in

variance by either the Cochran Test or Bartlett Test. The more standard deviations

pooled, the closer the pooled standard deviation (s) will be to the true standard

deviation (σ). A formula for calculating sp is given by Equation (22).
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Where:

dfp = Degrees of freedom associated with sp.



Si = Standard deviation of set 1.

Dfi = Degrees of freedom associated with that set.

♦ Note: See Appendix A for a definition of degrees of freedom.

3.2.1.1 Example 9:

Given the data from Table IV, calculate the pooled standard deviation.
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3.3 ESTIMATING CONFIDENCE LIMITS

When a standard deviation is calculated, it is merely an estimate of the true standard

deviation (σ). The only case in which s equals σ occurs when infinite determinations

are made. Since this never happens in reality, it is necessary to report a standard

deviation with its uncertainty.

The Chi Squared Distribution, given by Equation (23), is rearranged, given by Equation

(24), to calculate confidence limits for the standard deviation. Critical values for Chi

Squared are given in Appendix D.
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3.3.1.1 Example 10:

Using the pooled standard deviation calculated in Example 8, compute the confidence

limits for σ, with α=0.05.
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3.4 COMPARING A METHOD PRECISION TO A REFERENCE METHOD’S

PRECISION

A useful comparison between two methods is their precision. Differences between the

precision of two methods can be determined using the Chi Squared Distribution, given

by Equation(23).

3.4.1.1 Example 10:

The sp determined in Example 8 is to be compared to the precision of another method,

in which s=0.025. Is the reference method significantly less precise than the new

method?

The critical value for Chi Squared at α=0.95%, with 27 degrees of freedom, is 16.2.

There i8 a 95% chance that the calculated value would be above 16.2 from random

chance. Therefore the two precisions are statistically the same.
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Conversely the critical value at α=0.05 is 40.1. Therefore, there is a 5% chance that a

calculated value for Chi Squared would lie above 40.1 from random chance, but a

99.5% probability that it would be less than 40.1. For this reason the two precisions can

also be considered statistically the same.

3.5 EXPERIMENTAL DESIGN AND REPORTING PRECISION

3.5.1 THE NUMBER OF DETERMINATIONS

When designing an experiment to determine precision, one should strive to keep the

number of determinations the same at each concentration. It is possible to vary the



number of determinations between concentration levels, but the calculations become

more complex. As a minimum, the method should be evaluated at six different

concentrations, with three determinations at each level.

3.5.2 USING THE STANDARD DEVIATION TO REPORT PRECISION

Reporting the precision as a pooled standard deviation is preferable. This strategy

saves labour, and the higher number of degrees of freedom results in a more accurate

estimate of s. In this manner, the results of plant quality control tests could be pooled to

give an estimate of s. This estimate would require a large number of equivalent

determinations if it were to be determined by traditional methods.

The precision should be reported as s with confidence limits, and be based on the

greatest possible degrees of freedom. If the variance is calculated from sp, the greatest

number of homogenous variances should be used. Otherwise, at least 9 determinations

should be made, although more would improve the confidence limits.

3.5.3 WHEN TO USE THE COEFFICIENT OF VARIANCE IN REPORTING

PRECISION

There are times when the standard deviation statistically fluctuates over a range of

concentrations. In this case, the coefficient of variance, abbreviated CV, i8 used. The

CV is given by Formula (25), and is a ratio of the standard deviation to the arithmetic

mean.

CV
s

x
= ∗100

Equation 25

Worthy of note is that the coefficient of variance i8 a dimensionless number, unlike the

standard deviation. The coefficient of variance can also be pooled and have confidence

limits estimated for it. This is done by substituting the coefficient of variance, in place of

the standard deviation, within the appropriate formulas.



3.5.4 WHAT TO DO WHEN NEITHER CV OR S ARE CONSTANT OVER A

CONCENTRATION RANGE

In this case, either measure of precision is equally valid. The only drawback is that a

different assessment of variance has to be made at each concentration level. The

assessment of variance should be based upon at least five determinations for each

level.

4. EVALUATING THE ACCURACY OF A METHOD

Accuracy is just as important a measure of a method’s performance as precision.

Statistics can answer the question is the methods value the same as a reference

value? If no reference value exists, is the value the same as a reference method’s With

these concerns answered, the accuracy of a method can be reported.

4.1 IS THE METHODS VALUE THE SAME AS AN EXACT REFERENCE VALUE

To solve this problem, a modified t-test must be used, given by Equation (26). This test

assumes that there is no uncertainty in the reference material’s concentration.
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Where:

X bar = the arithmatic average of the method values.

µ0 = the reference value.

S = the methods standard deviation.

N = the methods number of determinations.



4.1.1.1 Example 11:

The average, from six determinations, of a GCFID method evaluation testing the

concentration of Diazinon was 0. 5529%, with s = 3.02X10-3. The actual concentration

of the reference diazinon was 0.4592%. Is the method statistically valid?
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1. With t 5, 0.05 = 2.57, the method does not yield an accurate result.

♦ Note: If an average fails the t-test, then non-random influences cause the deviation

from the reference value. This average is not statistically the same as the reference.

4.2 IS THE METHOD’S VALUE THE SAME AS A REFERENCE METHOD’S?

In this case, along with the case of a reference solution having an error associated with

it, one should refer back to section B 5. The t-tests in that sections will be sufficient to

determine whether an average of a method evaluation is equal to a reference

concentration or method.

4.3 REPORTING THE METHOD’S ACCURACY

At least three determinations, at a representative concentration level, should be made

to determine accuracy. Accuracy is reported as the percent difference, given by

Equation (27).

When a method is evaluated, the %Difference at each of the concentration levels

should be averaged. The magnitude of the %Difference at each level should also be

averaged. These two results are reported as the accuracy for the method.
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5. EVALUATING THE BIAS OF A METHOD BY LINEAR REGRESSION

Each method has a bias associated with it, and an equation relating the measured and

true concentrations can be statistically derived. This equation eliminates the non-

random portion of a method s error, making an analytical result much more accurate.

Many equations will fit a set of data points, but only one gives the best estimate. The

independent variable, x, is always the actual concentrations whereas y is the measured

concentration.

A good statistics package, such as GBStat4, can be used to calculate the best fit

equation for a set of data automatically. Such a program is a worthwhile investment

since it can save hours of drudgery.

5.1 TRANSFORMING PAIRS OF DATA

In order to fit an equation to a set of a data by simple means the data must first be

transformed to linearity. For this reason there are a limited number of equations that

can be used to fit a set of data, given in Table V. The alternative to transforming the

data is to use advanced differential calculus for fitting an equation to the data points: a

much less pleasant alternative.

Table V: Equations and their Transformations.

Curve to fit Curve rearranged for

estimating the true

concentration

Change y to Change x to

y=a+bx x=(y-a)b-1 y x

y=a+bx-1 x=b(y-a)-1 y-1 x

y=x(a+bx)-1 x=a(y-1-b)-1 xy-1 x

y=abx x=ln(y)[ln(ab)]-1 log y x

y=aebx x=ln(ya-1)b-1 log y x

                                           
4 Dr. Phillip Friedmann, GB-Stat, Dynamic Microsystems Inc., 1988, 89, 90, 91.



y=axb x=(y/a)(1/b) log y log x

y=ax+bn x=((y-a)/n)(1/n) y xn

5.1.1.1 Example12:

Transform the following data into a form suitable for linear regression, approximating an

equation of the form y=axb.

Table VI

Real % Measured X Bar

0.3016 0.2980

0.3993 0.4080

0.5010 0.5054

0.6020 0.5992

0.7013 0.7020

Take the logarithm of both the real and the measured values giving the results in Table

VII.

Table VII

Log real % Log measured %

-0.5206 -0.5258

-0.3987 -0.3893

-0.3002 -0.2964

-0.2204 -0.2224

-0.1541 -0.1537



5.2 THE CORRELATION COEFFICIENT

The correlation coefficient, r, is used to determine how well an equation fits a set of

data. Values of r2, the coefficient of determination, should be calculated for all of the

possible transformations. The transformation with the largest r2 is then fit with linear

regression techniques.

The equation for r is given by Formula (28), and critical values for the function are

found in Appendix D. If the magnitude of the calculated value for r is greater than the

critical value then the equation is a statistically valid fit. If r=1, the curve has a positive

slope, whereas an r value of -1 indicates a negative slope.
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Equation 28

5.2.1.1 Example 13:

Determine r for the data in Table VI, thereby evaluating how well an equation of the

form y=A+Bx fits the data.

Since the data in Table VI has not been transformed, all calculations performed on it

apply to the equation y=A+Bx. For an evaluation of the other relations, the appropriate

transformation of the data must first be performed. Only then can the calculations be

repeated on this data.
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The calculated value for r is much greater than the table value of rα=0.05, df=3 = 0. 878,

and can therefore be considered a good statistical; fit.

♦ Note: Although a particular fit may be statistically valid, it is not necessarily the best

fit. r2 values for all of the transformations were calculated, and the linear fit was

judged to best describe the data.

5.3 DETERMINING THE EQUATION OF BEST FIT

Now that the most suitable relationship has been found, all that has to be determined is

the actual equation for the fit. The equations corresponding to the various

transformations are given in Table V. Therefore, only the coefficients A and B now

need to be estimated from the transformed data, using Formulas (29) and (30).
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Equation 29

A y Bx= −

Equation 30

5.3.1.1 Example 15:

Now calculate the equation, of the form y=A+Bx, fitting the data in Table VI.

Since the best fit for the data is linear, no transformation of the data is necessary.

Therefore, the data in Table V should be used.
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( )( )A x= − = −050244 0 996915 0 50104 2 946 10 3. . . .

The line and plotted data are shown in Figure 1.

♦ Note: With three data points, a non-

linear fit may have a higher co-efficient

of determination than a linear fit. In

many cases, the non-linear fit will also

approximate linearity. The linear fit

should be chosen preferentially in such

a case, especially if it more accurately

describes the chemistry of the method.

6. SUMMARY

1.  In order to evaluate a method, the following steps should be taken:

6.1 EVALUATING PRECISION

1. Evaluate the variance at six different levels, with at least three replications each.

Then determine if the standard deviations between the concentration levels are

homogenous, using the Cochran Test. NOTE: KEEP THE NUMBER OF

REPLICATIONS THE SAME BETWEEN LEVELS, OTHERWISE THE BARTLETT

TEST HAS TO BE USED.

• If they are homogenous, then the precision at one level is an estimate of the

entire method’s preclslon.

• If routine analytical data is available, use Cochran’s or Bartlett‘s Test to

determine their homogeneity. If the analytical data’s variances are

homogenous, pool them by (22), and use the Chi Squared Distribution (24) to

estimate confidence limits for this precision.

Figure 1: Plot of Chlorpyrifos Data



• Otherwise, pool the variances of the six concentration levels using (22), and

estimate the confidence limits of the precision using the Chi Squared

Distribution (24).

• If the standard deviations are non-homogenous between levels, check to see if

the coefficients of variance (24) are homogenous between levels, using

Cochran’s or Bartlett’s Tests.

• If they are homogenous, pool them in the same manner as the standard

deviations see above.

• If they are also non-homogenous, then two extra determinations per level

must be performed. The precision should be reported, at each level, as a

standard deviation with confidence limits.

6.2 EVALUATING ACCURACY

1. Compare the averages at each of the six concentration levels to the reference

value. If the method’s value is being compared to an exact reference value, use the

t-test (26), otherwise use the t-tests in Section B.

• If the averages are statistically the same as the reference value, calculate the

%Difference at each level using (27). Then average the %Differences at each

level. Also average the magnitude of the %Difference at each level. Report

these averages as the accuracy of the method.

• If the averages are not statistically equal to the reference value at each level,

then the method gives results that differ from the reference value because of

non-random influences. Report the accuracy as above.

6.3 EVALUATING BIAS

1. Use a computer program, such as GB-Stat if at all possible.

2. Perform the transformations, for all the curve fitting equations using (28).

3. Calculate r2, the coefficient of determination for each of the curve fitting equations

using (28).

4. Fit the equation with the highest r2 to the data using (29) and (30).



5. Plot the average of the measured values V6. the reference values and graph the best

fit equation through the data. This pictorial representation gives an excellent idea of

how well the equation fits the data.


